logo
09_Mathem-UMK-ForLang_CO

3.2. Вопросы к зачёту

    1. Система, структура, субстанция.

    2. Связь структуры с субстанцией. Модель, оригинал, структурная модель.

    3. Предмет математики по Энгельсу, необходимость уточнения данного определения.

    4. Современное определение предмета математики по Бурбаки. Понятие изоморфизма. Концепция математики по Колмогорову.

    5. Характерные черты математики.

    6. Математика и действительность. Моделирование, математические модели действительности. Числа, фигуры, множества как примеры математических моделей.

    7. Процесс создания понятия натурального числа, этапы этого процесса как этапы конструирования математической модели реального явления.

    8. Развитие геометрических понятий. Евклидова и неевклидовы геометрии как примеры математических моделей реального пространства.

    9. Основные этапы развития математики.

    10. Зарождение математики. Три основных понятия математики.

    11. Математика постоянных величин (элементарная математика). Дедуктивный метод. Математические исследования в Европе, Индии и арабском мире.

    12. Математика переменных величин, основные понятия и идеи математического анализа.

    13. Современный период развития математики, характерные черты современной математики и направления её развития.

    14. Виды абстракций в математике. Особенности математической абстракции по сравнению с абстракциями в иных науках (например, лингвистики).

    15. Идеализация и её роль в математике и других науках (привести примеры идеализации в лингвистике).

    16. Отождествление в математике и других науках (привести примеры отождествления в лингвистике).

    17. Потенциальная и актуальная осуществимость (на примере потенциальной и актуальной бесконечности); возможные применения в лингвистике.

    18. Аксиоматический метод, его сущность. Примеры применения аксиоматического метода в языкознании.

    19. Понятие множества, способы задания множества. Чёткие и нечёткие, конечные и бесконечные множества (примеры из лингвистики).

    20. Отношения между множествами. Основные операции над множествами.

    21. Разбиение множества на классы. Классификация.

    22. Численность конечных множеств. Число элементов объединения, пересечения и разности двух конечных множеств.

    23. Бинарные отношения, свойства отношений. Отношения эквивалентности, порядка и толерантности.

    24. Комбинаторика и лингвистические множества. Понятие факториала.

    25. Размещения, размещения с повторениями.

    26. Перестановки, перестановки с повторениями.

    27. Сочетания.

    28. Понятие события, случайные события. Понятие вероятности, вероятность элементарного лингвистического события.

    29. Субъективное определение вероятности, его использование в лингвистике.

    30. Классическое определение вероятности.

    31. Статистическое определение вероятности. Выборочное частотное описание текста.

    32. Условная вероятность. Зависимые лингвистические события.