logo search
09_Mathem-UMK-ForLang_CO

Роль математики в гуманитарных науках. Языкознание и математика. Количественные методы в языкознании. Система и структура.

Науки, знания, мнения. Объект и предмет познания. Филология и лингвистика как области гуманитарного знания. Методология, метод, методика. Некоторые методы современной лингвистики, заимствованные у смежных наук. Теоретическая и прикладная лингвистика. Математическая лингвистика. Место и роль математики в современном мире, мировой культуре и истории. Высказывание К. Маркса «Наука только тогда достигает совершенства, когда ей удается пользоваться математикой». Естественные науки, математика и языкознание. Количественные методы в гуманитарном знании.

Системный подход в науке. Система, структура, субстанция.

  1. Предмет математики и её характерные черты.

Определение предмета математики по Энгельсу. Понятие изоморфизма, современное определение предмета математики (подход Бурбаки, формулировка концепции математики А.Н. Колмогорова). Высказывание «Математика – царица и служанка всех наук».

Характерные черты математики.

  1. Основные этапы развития математики. Основные понятия и идеи математического анализа

Зарождение математики. Математика постоянных величин. Математика переменных величин. Понятия переменной и функции, бесконечно малой величины и предела, производной и интеграла.

Современный период развития математики. Характерные черты современной математики и направления её развития.

  1. Математика и реальный мир. Моделирование, математические модели действительности.

Метод моделирования. Модель, оригинал, структурная модель.

Математика и действительность. Математические модели действительности. Понятия числа, фигуры и множества как примеры абстрактных, математических моделей количественных отношений и пространственных форм действительного мира.

  1. Аксиоматический метод. Виды абстракций в математике.

Математическое мышление, индукция и дедукция. Аксиомы, постулаты, теоремы, аксиоматический метод. Требования непротиворечивости и полноты аксиоматической теории. Геометрия Евклида, неевклидовы геометрии. Теорема Гёделя и невозможность полной формализации языка.

Особенности математической абстракции по сравнению с абстракциями в иных науках. Абстракция отождествления (обобщающая). Идеализация и ее роль в математике. Абстракции осуществимости. Потенциальная осуществимость и абстракция потенциальной бесконечности. Актуальная осуществимость и абстракция актуальной бесконечности.