logo search
1921 (20

Вариант 0

  1. ; ;

  2. ; ;

  3. ; ;

  4. ;

  5. ;

  6. ;

Вариант 1

  1. ; ;

  2. ; ;

  3. ; ;

  4. ;

  5. ;

  6. ;

Вариант 2

  1. ; ;

  2. ; ;

  3. ; ;

  4. ;

  5. ;

  6. ;

Вариант 3

  1. ; ;

  2. ; ;

  3. ; ;

  4. ;

  5. ;

  6. ;

Вариант 4

  1. ; ;

  2. ; ;

  3. ; ;

  4. ;

  5. ;

  6. ;

8.

Вариант 5

  1. ; ;

  2. ; ;

  3. ; ;

  4. ;

  5. ;

  6. ;

Вариант 6

  1. ; ;

  2. ; ;

  3. ; ;

  4. ;

  5. ;

  6. ;

Вариант 7

  1. ; ;

  2. ; ;

  3. ; ;

  4. ;

  5. ;

  6. ;

Вариант 8

  1. ; ;

  2. ; ;;

  3. ; ;

  4. ;

  5. ;

  6. ;

7.

8.

Вариант 9

  1. ; ;

  2. ;

  3. ; ;

  4. ;

  5. ;

  6. ;

Вопросы к экзамену

  1. Понятие функции нескольких переменных. Что называется функцией двух переменных?

  2. Предел функций нескольких переменных.

  3. Непрерывность функций нескольких переменных.

  4. Полное и ча­стное приращение функций нескольких переменных.

  5. Частные производные функции нескольких переменных.

  6. Производные высших порядков функции нескольких переменных.

  7. Производная по направлению функции нескольких переменных.

  8. Градиент и его свойства.

  9. Полный и частный дифференциалы функции нескольких переменных.

  10. Геометрический смысл дифференцируемости функции двух переменных.

  11. Экстремум функции нескольких пе­ременных. Необходимое условие экстремума.

  12. Достаточное условие экстремума для случая функции двух независимых переменных.

  13. Нахождение наибольшего и наименьшего значения функции нескольких переменных.

  14. Условный экстремум функции нескольких переменных.

  15. Метод множителей Лагранжа.

  16. Метод наименьших квадратов.

  17. Что называется суммой сходящегося степенного ряда?

  18. Почему при исследовании сходимости ряда можно отбрасывать любое конечное число его членов?

  19. Можно ли утверждать, что ряд сходится, если предел его общего члена равен нулю?

  20. Сформулируйте признак Даламбера и интегральный признак Коши сходимости ряда. Сформулируйте теорему сравнения рядов.

  21. Какие знакопеременные ряды называются абсолютно сходящимися и какие - условно сходящимися? Сформулируйте признак Лейбница.

  22. Приведите примеры степенных рядов, имеющих нулевой, конечный и бесконечный радиус сходимости.

  23. Выпишите разложения в ряд Маклорена функций: ,.

  24. Каковы области сходимости получившихся рядов?