logo search
Анализ антонимических отношений в подъязыке математики английского языка

ВВЕДЕНИЕ

Данная дипломная работа посвящена анализу антонимических отношений в подъязыке математики английского языка. В дипломной работе будем рассматривать антонимию, как средство выражения категории противоположности.

Английский язык имеет богатый словарный запас, который мы используем, когда описываем свои чувства, предметы и явления окружающего нас мира, излагаем свои требования и пытаемся что-то доказать. Для этого в своей речи мы используем антонимы и конверсивы, которые являются лексическими способами выражения категории “противоположности” в языке.

Проблема языкового выражения категории противоположности поднималась в современной лингвистической науке в связи с понятием языковой антонимии (Копылова 1995; Косякова 1981; Львов 1985; Миллер 1981; Новиков 1974 и др.).

Об антонимии, которая считается языковой универсалией (Новиков 1985; Джон Лайонз 1999), написано большое количество работ, посвященных описанию антонимии разных частей речи русского и английского языков (имя существительное: Морозова 1974; Савицкая 1977; имя прилагательное: Максимов 1958; Джафарова 1974; Маидова 1980; глагол: Эдельштейн 1972; Косякова 1983); исследованию словообразовательного и структурно-типологического аспекта антонимии (Маргарян 1988); выявлению типов семантических связей (Лебедева 1977); определению речевых противопоставлений (Комиссаров 1962; Соколова 1977); исследованию фразеологической антонимии (Алехина 1968; Стишкова 1976; Эмирова 1972; Бяшимова 1989). Список англоязычных авторов, занимавшихся изучением антонимии можно найти в [1], список испанских и хорватских авторов можно найти в [2].

Антонимия изучается не только в языкознании, но и в других областях науки. Например, в социологии метод семантического дифференциала активно использует понятие антонимии [3-8]; в переводоведении (антонимичный перевод) [9-10]; в области искусственного интеллекта: явление конверсивов и антонимии отображено в статье А.А. Котова “Модель эмоционального речевого воздействия для виртуального агента ролевой компьютерной игры” в трудах международной конференции «Диалог 2006». Явление градуальных антонимов широко используется в диссертации К.А. Гиляровой, “Языковая концептуализация формы физических объектов”, работах О.Ю. Шиманаевой, “Точные и приблизительные оценки размеров предметов в русском языке”, Е.Г. Соколовой, “Принципы построения семантических аннотаций содержания изображений”, опубликованные в трудах конференции Диалог 2006.

Антонимия, как средство выражения противоположности, в математическом тексте будет полезна для реализации программ автоматического доказательства теорем [11-16]. Здесь можно выделить два значения. 1) перевод с естественного языка на язык программы; 2) перевод с языка программы на естественный язык.

Целью исследования является изучение особенностей явления антонимии в математическом тексте.

Цель данной работы обусловила решение следующих задач:

1. раскрыть понятие «антоним»;

2. описать семантические особенности математического текста;

3. проанализировать виды антонимов в математическом тексте;

4. выявить основные способы образования антонимичных отношений в математическом тексте.

Объектом исследования в данной работе являются математические тексты из различных областей математики.

Предметом данного исследования является антонимия в математических текстах.

Работа состоит из введения, трех глав и заключения и снабжена списком используемой литературы.

Во введении обосновывается актуальность темы исследования, её теоретическая и практическая значимость, определяются объект, предмет, цель и задачи исследования.

Первая глава дипломной работы посвящена рассмотрению общего понятия антонимии, в ней приведены классификации антонимов, рассмотрены стилистические функции антонимов и способы их образования.

Вторая глава посвящена особенностям подъязыка математики, процессам его становления и его стилистическим особенностям, влияющим на антонимию в математическом тексте.

Третья глава рассматривает отношения антонимии, присущие непосредственно подъязыку математики, проанализированы функции антонимов в математическом тексте и их значение для математики, указаны способы образования сложных антонимичных отношений на уровне предложений и абзацев.

В заключении подводятся итоги проведённого исследования и формулируются краткие выводы.

Достижение цели исследования и решение поставленных задач обусловливает необходимость использования комплекса общенаучных теоретических (теоретический анализ, конкретизация, моделирование) и эмпирических (изучение специальной литературы, инструкций, словарей) методов исследования, что является его методологической основой.

Осуществленное исследование имеет несомненную теоретическую и практическую значимость. Полученные результаты могут найти применение в теории семантики английского языка и в областях искусственного интеллекта.